Аэродинамическое нагревание (видео обзоры)


Аэродинамическое нагревание это
— повышение температуры поверхности летательного аппарат при его полёте в атмосфере. Частицы газа при их движении относительно летательного аппарата тормозятся около его поверхности в зонах сжатия при отклонении потока, в ударных волнах и в пограничных слоях. Процесс торможения сопровождается выделением теплоты за счёт преобразования кинетической энергии поступательного движения частиц в тепловую и, следовательно, повышением температуры газа.

Исследования показывают, что наибольших значений А. н. достигает в областях повышенного давления в окрестности точек (критических точек) и линий растекания в носовой части тел, на передних кромках крыльев, килей, органов управления и на других выступающих элементах конструкции. При этом для ламинарного режима обтекания тепловые потоки максимальны непосредственно в критических точках, а для турбулентного режима они достигают наибольших значений на участках поверхности, на которых значения плотности потока течения QeVе максимальны; для двумерного течения это имеет место при числах Маха у поверхности, близких к единице. Коэффициент теплообмена на боковых поверхностях тел значительно меньше, чем в критических точках, однако в связи с большой площадью этих поверхностей тепловая защита требует значительного увеличения веса конструкции. При образовании на поверхности тел шероховатости тепловые потоки могут возрасти из-за более раннего перехода к турбулентному режиму, а также вследствие интенсификации турбулентных тепловых потоков на шероховатой поверхности (в 1,5—2 раза).

Большое значение имеет расчёт А. н. поверхностей гиперзвуковых летательных аппаратов, обладающих подъёмной силой и имеющих органы управления.
В этом случае возникают пространственные течения, сопровождающиеся искривлением линий тока и поперечными градиентами давления. Характерной особенностью пограничного слоя при этом является образование вторичных течений, за счёт которых пограничный слой в окрестности линий растекания утончается и тепловые потоки возрастают. Около рулей, щитков, а также при приближении к линиям отекания возможно образование местных отрывных зон с последующим возрастанием теплоотдачи в местах прилипания оторвавшихся потоков.

При M > 10 температура заторможенного газа достигает значений, при которых становится существенной диссоциация воздуха. Часть кинетической энергии внешнего потока, затраченной на диссоциацию, преобразуется в теплоту в результате рекомбинации у стенки. Большое значение при этом имеют диффузия диссоциированных молекул к стенке и химические реакции, протекающие на поверхности и в пограничном слое.

При скорости полёта более 10—12 км/с (межконтинентальные ракеты, космические аппараты при входе в атмосферу и др.) в расчёте А. н. необходимо учитывать передачу теплоты к поверхности от разогретого газа за ударными волнами и в пограничном слое за счёт радиационных тепловых потоков. Лучистые тепловые потоки при определенных условиях (толстый ударный слой перед затупленным телом, неравновесная диссоциация) могут сравниться и превысить конвективные тепловые потоки. При температураx, сопровождающих такие полёты, возникает также термическая ионизация воздуха, сильно влияющая на коэффициент конвективного и лучистого переноса.

В связи с появившимися реальными возможностями длительного полёта в верхнних слоях атмосферы на высоте более 60—80 км возникла необходимость расчёта А. н. в разреженном газе, когда средний путь свободного пробега молекул сравним с размерами тела или с толщиной пограничного слоя и существенно проявляется дискретность среды (см. Разреженных газов динамика). Из-за малой плотности газа тепловые потоки в этой области течений малы, хотя при скоростях полёта, равных 6—8 км/с, температуры торможении достаточно велики. В этих условиях вся область течений в зависимости от значений параметров подобия Re и М может быть условно разделена на области сплошной среды, течения со скольжением и свободномолекулярного течения. В области течения со скольжением разрежённость среды проявляется в первую очередь у стенки, где скорость и температура газа отличаются от скорости и температуры самой стенки. При свободномолекулярном течении можно пренебрегать числом столкновений молекул между собой по сравнению с числом их столкновений с поверхностью тела.

Для расчёта теплообмена в разреженном газе решающее значение имеет определение коэффициентов аккомодации, характеризующих взаимодействие молекул газа с поверхностями тела. Значения коэффициент аккомодации зависят от загрязнённости поверхностей, их шероховатости, наличия адсорбированной газовой плёнки, соотношения масс молекул газа набегающего потока и атомов материала поверхности и др. При больших скоростях полёта принимают приближенно, что коэффициент аккомодации примерно равен единице.

При полёте на высотах более 100 км роль А. н. уменьшается и, начиная с высот 180—200 км, тепловые потоки за счёт А. н. становятся пренебрежимо малыми по сравнению с лучистыми потоками от Земли и Солнца.

Источник: Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.

Видео

Чувахов П.В. Аэродинамическое нагревание | Лекция №1

Чувахов П.В. Аэродинамическое нагревание | Лекция №1

Почему воздушный поток над аэродинамическим профилем движется быстрее, чем под ним?

Почему воздушный поток над аэродинамическим профилем движется быстрее, чем под ним?

Закон Бернулли

Закон Бернулли

Галилео. Эксперимент. Закон Бернулли

Галилео. Эксперимент. Закон Бернулли

Галилео. Эксперимент. Аэродинамическая труба

Галилео. Эксперимент. Аэродинамическая труба

Общие основы аэродинамики.

Общие основы аэродинамики.

Аэродинамика для всех – Часть 1 Начало видеокурса

Аэродинамика для всех – Часть 1 Начало видеокурса

Галилео. Эксперимент. Расширение при нагревании

Галилео. Эксперимент. Расширение при нагревании

Учебный фильм: Общие основы аэродинамики

Учебный фильм: Общие основы аэродинамики

ТОП-5 ошибок при шумоизоляции автомобиля

ТОП-5 ошибок при шумоизоляции автомобиля

аэродинамические щитки - зачем они нужны?

аэродинамические щитки - зачем они нужны?

Mercedes S Class 2014 Аэродинамика

Mercedes S Class 2014 Аэродинамика

Обзор технологии газодинамического напыления металла.

Обзор технологии газодинамического напыления металла.

Мощность котла и емкость системы отопления.

Мощность котла и емкость системы отопления.

Аэродинамический расчет систем механической вентиляции

Аэродинамический расчет систем механической вентиляции

Обзор характеристик колонкового (алмазного) и RC бурения / Core (diamond) and RC drilling overview

Обзор характеристик колонкового (алмазного) и RC бурения / Core (diamond) and RC drilling overview

Технология трехмерной аэродинамической оптимизации формы

Технология трехмерной аэродинамической оптимизации формы

Принцип работы турбореактивного двигателя

Принцип работы турбореактивного двигателя

ПРОЕКТИРОВАНИЕ АЭРОДИНАМИЧЕСКИ ЭФФЕКТИВНЫХ ВЕНТИЛЯЦИОННЫХ СИСТЕМ

ПРОЕКТИРОВАНИЕ АЭРОДИНАМИЧЕСКИ ЭФФЕКТИВНЫХ ВЕНТИЛЯЦИОННЫХ СИСТЕМ

Расчёт теплового потока в SOLIDWORKS Flow Simulation на примере полотенцесушителя

Расчёт теплового потока в SOLIDWORKS Flow Simulation на примере полотенцесушителя
Поделиться или сохранить к себе:
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных, принимаю Политику конфиденциальности и условия Пользовательского соглашения.