Алюминиевые сплавы (видео обзоры)


Алюминиевые сплавы это
Первый А. с. (дуралюмин), получивший промышленное применение, был разработан в 1909 А. Вильмом (Германия). С производством этого А. с. связан начальный. период развития металлического самолётостроения. В РСФСР в 1922 на заводе по обработке цветных металлов в посёлке Кольчугино Владимирской области было начато промышленное производство листового и сортового проката из отечественного А. с. кольчугалюминия (создатели Ю. Г. Музалевский и С. М. Воронов), отличавшегося по составу от немецкого дуралюминия. Большая роль, которую играют А. с. в авиастроении, определяется удачным сочетанием свойств: малой плотностью (2500—2900 кг/м3), высокими прочностью (до 500—600 МПа), коррозионной стойкостью, технологичностью при литье, обработке давлением, сварке и обработке резанием. Благодаря высокой удельной прочности начиная с 20 х гг. XX в. А. с. являются важнейшим конструкционным материалом в самолётостроении.

Основные легирующие компоненты А. с. — магний, медь, цинк, кремний. В результате легирования алюминия одним, двумя и более элементами из числа перечисленных в различных сочетаниях, а также малыми добавками одного или нескольких переходных металлов — марганца, хрома, титана, циркония, никеля, железа, ванадия — получены и применяются в промышленности более 150 А. с. В 70 е гг. в число легирующих компонентов А. с. вошел также питий.

Все А. с. обычно разделяют на деформируемые, из которых изготовляют листы, плиты, профили и другие полуфабрикаты путём пластинчатой деформации литой заготовки, и литейные, которые предназначены исключительно для фасонного литья. Из деформируемых А. с. наибольшее значение имеют сплавы следующих систем.

Алюминий — магний с добавками марганца, титана, циркония (сплавы АМr2, АМr5, АМr6; цифра в марке показывает приблизительное содержание магния в процентах).
Эти сплавы не упрочняются термообработкой; в отожжённом состоянии характеризуются умеренной прочностью (до 350 МПа для АМr6), высокой пластичностью, очень высокой коррозионной стойкостью, хорошей свариваемостью. Широко применяются для ответственных сварных конструкций.

Алюминий — медь — магний с добавками марганца — дуралюмины (Д1, Д16, Д18, В65, Д19, В17, ВАД1). Упрочняются термообработкой; подвергаются, как правило, закалке и естественному старению. Характеризуются сочетанием высокой статической прочности (до 450—500 МПа) при комнатной и повышенной (до 150—175°С) температуpax, высоких усталостной прочности и вязкости разрушения. Такое сочетание свойств определило широкое применение этих сплавов, особенно Д16 и Д16ч (чистого по примесям железа и кремния), в самолётостроении. Недостаток — низкая коррозионная стойкость; изделия требуют тщательной защиты от коррозии.

Алюминий — цинк — магний — медь с добавками марганца, хрома, циркония. Подвергаются закалке и искусственному старению. Сплавы имеют самую высокую из всех А. с. прочность (до 700 МПа для В96Ц). Однако при старении на максимальную прочность повышается чувствительность этих А. с. к коррозионному растрескиванию, снижаются пластичность и значения характеристик конструкционной прочности. Для этих сплавов внедрены режимы смягчающего старения (перестаривания), которые обеспечивают сочетание достаточно высокой прочности (420—470 МПа для В93 и В95) с удовлетворительными значениями сопротивления коррозионному растрескиванию и конструкционной прочности. Сплав В95, особенно его модификация В95пч (повышения чистоты по примесям железа и кремния), относится к числу наиболее важных конструкционных материалов в самолётостроении.

Алюминий — магний — литий с добавками марганца и циркония. Подвергаются закалке и искусственному старению. Отличительная особенность — сочетание достаточно высокой прочности (420—450 МПа) с наименьшей для промышленных А. с. плотностью (2500 кг/м ), высоким модулем упругости (75 ГПа) и удовлетворительной свариваемостью. Недостатки: пониженная пластичность, плохие технологические свойства.

Из литейных сплавов наибольшее значение имеют сплавы следующих систем.

Алюминий — кремний, (силумины) с добавками магния, меди, марганца, титана, никеля (АЛ2, АЛ4, АЛ9, АЛ5, АЛ34) — самые распространённые литейные А. с. При наличии магния и меди сплавы упрочняются термообработкой. Механические свойства колеблются в широких пределах (прочность от 15 МПа для АЛ2 до 350 МПа для АЛ34). Сплавы отличаются очень хорошими литейными свойствами, удовлетворительной коррозионной стойкостью и хорошей свариваемостью.

Алюминий — медь с добавками марганца, титана, никеля, циркония, церия, кадмия (АЛ7, АЛ19, АЛЗЗ, ВАЛ10). Упрочняются закалкой с последующим искусственным старением. К этой группе относятся самые прочные (до 500 МПа для ВАЛ10) и самые жаропрочные (90 МПа для АЛ33) литейные А. с. Недостатки: низкая коррозионная стойкость, пониженные литейные свойства.

Наряду с деформируемыми к литейными А. с. в авиастроении используются спечённые материалы — спечённая алюминевая пудра и спечённый алюминевый сплав.

Источник: Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.

Видео

Алюминий. Сплавы алюминия. Алюминиевые рамы для велосипеда.

Алюминий. Сплавы алюминия. Алюминиевые рамы для велосипеда.

Обучающее видео Алюминий и его сплавы

Обучающее видео   Алюминий и его сплавы

Алюминий, сплавы

Алюминий, сплавы

ДРЕВНИЙ АЛЮМИНИЕВЫЙ СПЛАВ КРЕПЧЕ СТАЛИ

ДРЕВНИЙ АЛЮМИНИЕВЫЙ СПЛАВ КРЕПЧЕ СТАЛИ

Про алюминий интересно

Про алюминий интересно

Цинковые и алюминиевые сплавы Как отличить цинк силумин дюраль

Цинковые и алюминиевые сплавы Как отличить цинк силумин дюраль

Как узнать какой Алюминиевый сплав? Какой присадкой сваривать?🤔

Как узнать какой Алюминиевый сплав?  Какой присадкой сваривать?🤔

Что лучше: 7005 или 6061? Выбираем раму на молекулярном уровне!

Что лучше: 7005 или 6061? Выбираем раму на молекулярном уровне!

Как добывают алюминий или что скрывает Русал

Как добывают алюминий или что скрывает Русал

Титан и его сплавы

Титан и его сплавы

Галилео. Алюминий (ч.1)

Галилео. Алюминий (ч.1)

Приготовление магний-алюминиевого сплава (сплав ПАМ).

Приготовление магний-алюминиевого сплава (сплав ПАМ).

Производство алюминиевых сплавов. Production of aluminum alloy.

Производство алюминиевых сплавов. Production of aluminum alloy.

Алюминий - Самый РАСПРОСТРАНЕННЫЙ Металл на ЗЕМЛЕ!

Алюминий - Самый РАСПРОСТРАНЕННЫЙ Металл на ЗЕМЛЕ!

Сплав алюминия и меди в домашних условиях

Сплав алюминия и меди в домашних условиях

Плавим алюминий из пивных банок!!!Простой способ плавки алюминия!!!!

Плавим алюминий из пивных банок!!!Простой способ плавки алюминия!!!!

Как легко самому расплавить алюминий / aluminum melt

Как легко самому расплавить алюминий  /  aluminum melt

Действующее литейное производство вторичных сплавов, алюминий

Действующее литейное производство вторичных сплавов, алюминий

🔥 МИНИ ПЕЧЬ для плавки АЛЮМИНИЯ. Алюминиево-магниевый сплав. Литье алюминия в домашних условиях

🔥 МИНИ ПЕЧЬ для плавки АЛЮМИНИЯ. Алюминиево-магниевый сплав. Литье алюминия в домашних условиях

СКОЛЬКО ПОЛУЧИТСЯ кг. ЧИСТОГО АЛЮМИНИЯ ИЗ 100 БАНОК Coca-Cola/Переплавка, плавка, литье алюминия

СКОЛЬКО ПОЛУЧИТСЯ кг. ЧИСТОГО АЛЮМИНИЯ ИЗ 100 БАНОК Coca-Cola/Переплавка, плавка, литье алюминия
Поделиться или сохранить к себе:
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных, принимаю Политику конфиденциальности и условия Пользовательского соглашения.