Коническое течение (видео обзоры)


Коническое течение это
течение, в котором все газодинамические переменные постоянны вдоль прямых (лучей), проведённых из некоторой фиксированной точки (полюса). К. т. — распространенный вид пространственного течения, реализующийся при сверхзвуковом обтекании конусов, треугольных крыльев и т. д., а также в некоторых ограниченных областях неконических в целом потоков (боковая кромка прямоугольного крыла, крыло изменяемой геометрии, вырез на крыле и т.
д.). В рамках модели К. т. существенно упрощается изучение пространственного обтекания тел, так как число независимых переменных уменьшается до двух (К. т. общего вида) и даже до одного (осесимметричное К. т.). Впервые осесимметричное К. т. — сверхзвуковое обтекание кругового конуса — было рассмотрено в 1929 А. Буземаном. В этом случае присоединённый к носку скачок уплотнения, имеет коническую форму, за ним следует изоэнтропическое течение сжатия с криволинейными характеристиками. При заданном Маха числе набегающего вдоль оси конуса потока геометрическим местом концов радиус-вектора скорости на конусе является так называемая яблоковидная кривая, используемая для графического решения задачи об обтекании конуса. При обтекании конуса под углом атаки в плоскости симметрии на подветренной стороне, как правило, возникает энтропийная особенность (так называемая точка Ферри). В плоскости конических переменных она представляет собой точку, в которую собираются конические проекции поверхностей тока.

К осесимметричным К. т., начинающимся от однородного потока, относятся также внутренние течение в сопле сжатия — канале с двумя цилиндрическими участками разного диаметра и переходной зоной определенной формы, в которой течение сжатия замыкается коническим скачком уплотнения (Буземан, 1942), и течение расширения около сужающейся по определенному закону хвостовой части тела вращения с донным срезом (А. А. Никольский, 1949).

В классе К. т. получены точные решения задач обтекания пирамидальных тел с поперечным сечением в виде звезды или правильного вогнутого многоугольника, которые обладают меньшим волновым сопротивлением, чем круговой конус с той же площадью донного сечения.

Течение около плоского треугольного крыла также относится к классу конических, если скачок уплотнения присоединён к вершине крыла. Если он присоединен также к передним кромкам (крыло со сверхзвуковым передними кромками), то течения на наветренной и подветренной сторонах не взаимодействуют и могут рассчитываться отдельно, в противном случае (крыло с дозвуковыми передними кромками) их нужно рассчитывать совместно (см. Крыла теория).

Наряду с решением ряда задач о К. т. в точной нелинейной постановке широко применяются приближенные методы их изучения. Например, задачи обтекания тонкого тела или треугольного крыла под малым углом атаки решаются в линейной постановке, что вместе со свойством конечности позволяет эффективно использовать методы теории функций комплексного переменного. С помощью нелинейного метода тонкого ударного слоя для гиперзвукового К. т. (см. Гиперзвуковое течение) получены приближенные законы подобия и аналитического решения задач обтекания конуса и треугольного крыла под углом атаки, используемые для оценки аэродинамических характеристик.

Источник: Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994.

Видео

11 класс, 28 урок, Сечения конической поверхности

11 класс, 28 урок, Сечения конической поверхности

Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |

Эллипс, парабола и гипербола. Конические сечения | Ботай со мной #055 | Борис Трушин |

Семинар 1. Сопло Лаваля.

Семинар 1. Сопло Лаваля.

Семинар 1. Пример 2 (Истечение из конического насадка).

Семинар 1. Пример 2 (Истечение из конического насадка).

Истечение жидкости из отверстий и насадков

Истечение жидкости из отверстий и насадков

Слово после утрени с чином Погребения Плащаницы. Иерей Константин Корепанов (22.04.2022)

Слово после утрени с чином Погребения Плащаницы. Иерей Константин Корепанов (22.04.2022)

"Океанические течения", §16 География 7 класс, Полярная звезда, Алексеев.

"Океанические течения", §16 География 7 класс, Полярная звезда, Алексеев.

#198. ЭЛЛИПС, ГИПЕРБОЛА, ПАРАБОЛА

#198. ЭЛЛИПС, ГИПЕРБОЛА, ПАРАБОЛА

1-титульная по коническому редуктору

1-титульная по коническому редуктору

3 Турбулентный и ламинарный отрыв пограничного слоя

3 Турбулентный и ламинарный отрыв пограничного слоя

1.5 КОНУС. Геометрические тела.

1.5 КОНУС. Геометрические тела.

Сопротивление материалов. T-03 (безмоментная коническая оболочка, внутреннее давление).

Сопротивление материалов. T-03 (безмоментная коническая оболочка, внутреннее давление).

Kitfort kt-744. В ДВА РАЗА ДЕШЕВЛЕ АНАЛОГОВ!! Кофемолка с коническими жерновами за 4990!

Kitfort kt-744. В ДВА РАЗА ДЕШЕВЛЕ АНАЛОГОВ!! Кофемолка с коническими жерновами за 4990!

Как делают большие свёрла в Китае

Как делают большие свёрла в Китае

ГРИБЫ СМОРЧКИ И СТРОЧКИ

ГРИБЫ СМОРЧКИ И СТРОЧКИ

Валы и механические передачи 3D. Построение конической прямозубой передачи

Валы и механические передачи 3D. Построение конической прямозубой передачи

Конизация шейки матки

Конизация шейки матки

Вебинар: Вентиляция — это не сложно. Типы систем, области их применения. Базовый курс простым языком

Вебинар: Вентиляция — это не сложно. Типы систем, области их применения. Базовый курс простым языком

Аналитическая геометрия, 8 урок, Поверхности второго порядка

Аналитическая геометрия, 8 урок, Поверхности второго порядка

Коническая шестерня на 3D принтере, от МОДЕЛИ до готовой ДЕТАЛИ!

Коническая шестерня на 3D принтере, от МОДЕЛИ до готовой ДЕТАЛИ!
Поделиться или сохранить к себе:
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных, принимаю Политику конфиденциальности и условия Пользовательского соглашения.