Применение газов в технике

Газы обладают рядом свойств, которые делают их незаменимыми в очень большом числе технических устройств.

Газ – амортизатор. Большая сжимаемость и легкость газа, возможность регулировки давления делают его одним из самых совершенных амортизаторов, применяемых в ряде устройств.

Вот как работает автомобильная или велосипедная шина. Когда колесо наезжает на бугорок, то воздух в шине сжимается и толчок, получаемый осью колеса, значительно смягчается (рис. 35). Если бы шина была жесткой, то ось подпрыгнула бы вверх на высоту бугорка.

Газ – амортизатор

Газ – рабочее тело двигателей. Большая сжимаемость и сильно выраженная зависимость давления и объема от температуры делают газ незаменимым рабочим телом в двигателях, работающих на сжатом газе, и в тепловых двигателях.

В двигателях, работающих на сжатом газе, например воздухе, газ при расширении совершает работу почти при постоянном давлении. Сжатый воздух, оказывая давление на поршень, открывает двери в автобусах и электропоездах. Сжатым воздухом приводят в движение поршни воздушных тормозов железнодорожных вагонов и грузовиков. Пневматический молоток и другие пневматические инструменты приводятся в движение сжатым воздухом. Даже на космических кораблях имеются небольшие реактивные двигатели, работающие на сжатом газе – гелии. Они ориентируют корабль нужным образом.

В двигателях внутреннего сгорания на автомобилях, тракторах, самолетах и в реактивных двигателях в качестве рабочего тела, приводящего поршень, турбину или ракету в движение, используют газы высокой температуры. При сгорании горючей смеси в цилиндре температура резко увеличивается до тысяч градусов, давление на поршень растет и газ, расширяясь, совершает работу на длине рабочего хода поршня (рис. 36).

Газ – рабочее тело двигателей

Только газ можно использовать в качестве рабочего тела в тепловых двигателях. Нагревание жидкого или твердого тела до такой же температуры, как и газа, вызвало бы лишь незначительное перемещение поршня.

Любое огнестрельное оружие, в сущности, является тепловой машиной. Сила давления газов – продуктов сгорания взрывчатых веществ – выталкивает пулю из канала ствола или снаряд из дула орудия. И существенно, что эта сила совершает работу на всей длине канала. Поэтому скорости пули и снаряда оказываются огромными сотни метров в секунду.

Разреженные газы. Способность к неограниченному расширению приводит к тому, что получение газов при очень малых давлениях в состоянии вакуума – является сложной технической задачей. (В состоянии вакуума молекулы газа практически не сталкиваются друг с другом, а только со стенками сосуда.)

Обычные поршневые насосы из-за просачивания газов между поршнем и стенками цилиндра становятся неэффективными. Получить с их помощью давления ниже десятых долей миллиметра ртутного столба не удается. Приходится применять для откачки газов сложные устройства. В настоящее время достигнуты давления порядка 10-10 Па (10-12 мм рт. ст.).

Вакуум нужен главным образом в электронных лампах и других электронных приборах. Столкновения электрически заряженных частиц (электронов) с молекулами газа препятствуют нормальной работе этих приборов. Иногда приходится создавать вакуум в очень больших объемах, например в ускорителях элементарных частиц. Вакуум нужен также для выплавки свободных от примесей металлов, создания термоизоляции и т. д.

1. Что называют уравнением состояния? 2. Сформулируйте уравнение состояния для произвольной массы идеального газа. 3. Чему равна универсальная газовая постоянная? 4. Как связаны давление и объем газа при изотермическом процессе? 5. Как связаны объем и температура при изобарном процессе? 6. Как связаны давление и температура при изохорном процессе? 7. Как можно осуществить изотермический, изобарный и изохорный процессы? 8. Почему в качестве рабочего тела в тепловых двигателях используют только газы?