Перемещение. Путь
До сих пор мы рассматривали только прямолинейное равномерное движение. При этом точечные тела двигались в выбранной системе отсчета либо в положительном, либо в отрицательном направлении оси координат X. Мы установили, что в зависимости от направления движения тела, например, за промежуток времени от момента t1 до момента t2 изменение координаты тела (x2 - x1) может быть положительным, отрицательным или равным нулю (если x2 = x1).
Изменение координаты x2 - x1 принято обозначать символом Δx12 (читается «дельта икс один, два»). Эта запись означает, что за промежуток времени от момента t1 до момента t2 изменение координаты тела Δx12 = x2 - x1. Таким образом, если тело двигалось в положительном направлении оси X выбранной системы координат (x2 > x1), то Δx12 > 0. Если же движение происходило в отрицательном направлении оси X (x21), то Δx12
Результат движения удобно определять с помощью векторной величины. Такой векторной величиной является перемещение.
Перемещением точки за промежуток времени называют направленный отрезок прямой, начало которого совпадает с начальным положением точки, а конец – с конечным положением точки.
Как и любую векторную величину, перемещение характеризуют модулем и направлением.
Записывать вектор перемещения точки за промежуток времени от t1 до t2 мы будем следующим способом: Δx12.
Поясним сказанное на примере. Пусть некоторая точка A (точечное чело) движется в положительном направлении оси X и за промежуток времени от t1 до t2 перемещается из точки с координатой x1 в точку с большей координатой x2 (рис. 44). В этом случае вектор перемещения направлен в положительном направлении оси X, а его модуль равен изменению координаты за рассматриваемый промежуток времени: Δx12 = x2 - x1 = (5 - 2) м = 3 м.
На рис. 45 изображено точечное тело В, которое движется в отрицательном направлении оси X. За промежуток времени от t1 до t2 оно перемещается из точки с большей координатой x1 в точку с меньшей координатой x2. В результате изменение координаты точки B за рассматриваемый промежуток времени Δx12 = x2 - x1 = (2 - 5) м = -3 м. Вектор перемещения в этом случае будет направлен в отрицательном направлении оси X, а его модуль |Δx12| равен 3 м. Из рассмотренных примеров можно сделать следующие выводы.
Направление перемещения при прямолинейном движении в одном направлении совпадает с направлением движения.
Модуль вектора перемещения равен модулю изменения координаты тела за рассматриваемый промежуток времени.
В повседневной жизни для описания конечного результата движения используют понятие «путь». Обычно путь обозначают символом S.
Путь – это все расстояние, пройденное точечным телом за рассматриваемый промежуток времени.
Как и любое расстояние, путь – величина неотрицательная. Например, путь, пройденный точкой A в рассмотренном примере (см. рис. 44), равен трем метрам. Путь, пройденный точкой B, также равен трем метрам.
В рассмотренных примерах (см. рис. 44 и 45) тело все время двигалось в каком-либо одном направлении. Поэтому пройденный им путь равен модулю изменения координаты тела и модулю перемещения: s12 = |Δx12|.
Если тело двигалось все время в одном направлении, то пройденный им путь равен модулю перемещения и модулю изменения координаты.
Ситуация изменится, если тело в течение рассматриваемого промежутка времени изменяет направление движения.
На рис. 46 изображено, как двигалось точечное тело с момента t0 = 0 до момента t2 = 7 с. До момента t1 = 4 с движение происходило равномерно в положительном направлении оси X. В результате чего изменение координаты Δx01 = x1 - x0 = (11 - 3) м = -8 м. После этого тело стало двигаться в отрицательном направлении оси X до момента t2 = 7 с. При этом изменение его координаты Δx12 = x2 - x1 = (5 - 11) м = -6 м. График этого движения приведен на рис. 47.
Определим изменение координаты и перемещение тела за промежуток времени от t0 = 0 до t2 = 7 с. В соответствии с определением изменение координаты Δx02 = x2 - x0 = 2 м > 0. Поэтому перемещение Δx02 направлено в положительном направлении оси Х, а его модуль равен 2 м.
Теперь определим путь, который прошло тело за тот же промежуток времени от t0 = 0 до t2 = 7 с. Сначала тело прошло 8 м в одном направлении (что соответствует модулю изменения координаты Δx01), а затем 6 м в обратном направлении (эта величина соответствует модулю изменения координаты Δx12). Значит, всего тело прошло 8 + 6 = 14 (м). По определению пути за промежуток времени от t0 до t2 тело прошло путь s02 = 14 м.
Разобранный пример позволяет сделать вывод:
В случае, когда тело в течение рассматриваемого промежутка времени меняет направление своего движения, путь (все пройденное телом расстояние) больше и модуля перемещения тела, и модуля изменения координаты тела.
Теперь представьте себе, что тело после момента времени t2 = 7 с продолжило свое движение в отрицательном направлении оси X до момента t3 = 8 с в соответствии с законом, изображенным на рис. 47 пунктирной линией. В результате в момент времени t3 = 8 с координата тела стала равна x3 = 3 м. Нетрудно определить, что в этом случае перемещение тела за промежуток времени от t0 до t3 с равно Δx13 = 0.
Ясно, что если нам известно только перемещение тела за время его движения, то мы не можем сказать как двигалось тело в течение этого времени. Например, если бы о теле было известно только, что его начальная и конечная координаты равны, то мы сказали бы, что за время движения перемещение этого тела равно нулю. Сказать что-либо более конкретное о характере движения этого тела было бы нельзя. Тело могло при таких условиях вообще стоять на месте в течение всего промежутка времени.
Перемещение тела за некоторый промежуток времени зависит только от начальной и конечной координат тела и не зависит от того, как двигалось тело в течение этого промежутка времени.
Итоги
Перемещением точки за промежуток времени называют направленный отрезок прямой, начало которого совпадает с начальным положением точки, а конец – с конечным положением точки.
Перемещение точечного тела определяется только конечной и начальной координатами тела и не зависит от того, как двигалось тело в течение рассматриваемого промежутка времени.
Путь – все расстояние, пройденное точечным телом за рассматриваемый промежуток времени.
Если тело в процессе движения не меняло направления движения, то пройденный этим телом путь равен модулю его перемещения.
Если тело в течение рассматриваемого промежутка времени меняло направление своего движения, путь больше и молуля перемещения тела, и модуля изменения координаты тела.
Путь всегда величина неотрицательная. Он равен нулю только в том случае, если в течение всего рассматриваемого промежутка времени тело покоилось (стояло на месте).
Вопросы
- Что такое перемещение? От чего оно зависит?
- Что такое путь? От чего он зависит?
- Чем путь отличается от перемещения и изменения координаты за один и тот же промежуток времени, в течение которого тело двигалось прямолинейно, не изменяя направления движения?
Упражнения
- Используя закон движения в графической форме, представленный на рис. 47, опишите характер движения тела (направление, скорость) в разные промежутки времени: от t0 до t1, от t1 до t2, от t2 до t3.
- Собачка Протон выбежала из дома в момент времени t0 = 0, а затем по команде своего хозяина в момент времени t4 = 4 с бросилась обратно. Зная, что Протон все время бежал по прямой и модуль его скорости |v| = 4 м/с, определите графическим способом: а) изменение координаты и путь Протона за промежуток времени от t0 = 0 до t6 = 6 с; б) путь Протона за промежуток времени от t2 = 2 с до t5 = 5 с.